
Self – The Power of Simplicity

A short tutorial on a prototype
based programming language

Outline
The Self Object Model

The OO paradigm revisited
Semantics of messages
Prototype based languages
Performace issues

The Self Implementation
Available Ports
The Self GUI
Syntax of Self
Goodies

References

The OO paradigm revisited
Byte 8/81:

“A language should be designed around a powerful
metaphor that can be uniformly applied in all areas” [D.
Ingalls]
“Programming Smalltalk is similar to the process of human
interaction” [C. Morgan]
“Instead of a bit-grinding processor raping and plundering
data structures, we have a universe of well-behaved objects
that courteously ask each other to carry out their various
desires.” [D. Ingalls]

Smalltalk metaphor: object, message, class, instance,
method, (variable) [Smalltalk-80, The Language]
What about an even simpler, more powerful
metaphor?

© Byte Mag.

Object-Oriented
Analysis and Design

Identify Objects

Classify Objects

Identify Attributes

Implement Methods

Gordon, show foil!

The Design principles of Self

Messages-at-the-bottom
consequently base information representation and
manipulation on objects communicating by
messages
put all optimizations into the compiler

Occam’s razor
leave out everything that dilutes the paradigm
strip classes, variables, numbers, and control
structures from the language kernel

[Ungar, Smith. SELF: The Power of Simplicity. Lisp Journal, 4/91]

similar
to LISP

The Self Object-Model
Every object contains a
collection of slots
Each slot has a name and an
object
Every slot can be marked as
parent slot
A non-method object simply
returns itself when invoked
as a method
A method objects contains a
piece of code that’s executed
on invocation
Slots of method objects can
be marked as argument slots

parent*

width:

7width

height:

9height

paint
:y

how to paint objects

:x

parent*

height:

^widthheight

width: x

:x

assignment primitives
overwrite the corresponding

get methods

variables are modeled
as methods returning

constant values

Semantics of Messages
1. Lookup

look for a slot with the
same name as the
selector in the object
if there is none, search
along all parent slots
If there is no such slot,
or the slot is
ambiguous, generate an
error

parent*

width:

7width

height:

9height

paint
:y

how to paint objects

:x

height:

height: 5

parent*

^widthheight

width: x

:x

Evaluator: Send message
height: 5 to this object

Evaluator: Send message
height: 5 to this object

reciever

method
holder

selector
argument

Semantics of Messages
2. Activation

clone method object
to obtain activation
record
fill in self and
argument slots
evaluate code in
context of activation
object

parent*

width:

7width

height:

9height

paint
:y

how to paint objects

:x

height:

height: 5

parent*

^widthheight

width: x

:x

self

width: x

:x 5

Prototype-based Languages

Blend state and behavior
Support singleton objects
Creation of new objects by cloning, not by
instantiation
Uniform metaphor even for activation
Simpler and more expressive inheritance
scheme
No infinite meta-regress at conceptual level

Object isA Class isA MetaClass isA …

computing
instead of
storing and
vice versa

simpler

Performance Issues

Wait a minute: Is this not horribly inefficient?
That depends on your compiler.
Compiler recovers variables and data types
transparently from code
Self compiler can undo all optimizations
transparently: easy to debug programs
Benefit: Get maximum flexibility with the full
performance

maps

Available Ports
Solaris: Original Implementation by Stanford/Sun
(Ungar, Smith, et al.), NIC & SIC compilers fully
functional (http://research.sun.com/self/)
Linux: Based on Solaris port, by Cichon/Gliebe, only
NIC supported (http://www.cichon.de/self/ or
http://www.gliebe.de/self/)
MacOS-X: by Ungar, only NIC supported
(http://research.sun.com/self/)
Windows: Based on Linux port, by Gliebe, uses
Cygwin&XFree (http://www.gliebe.de/self/)

Morphics: The Self GUI

Easy to create interactive programs
Provides an object-based artificial
reality
Display is always in sync with
underlying object structure
See Demo

The Self Syntax
Parentheses () enclose object literals
Slot lists are enclosed by |s, everything else is code
Message selectors are like in Smalltalk

identifier: unary message (e.g., size or getLength)
operator: binary message (e.g., + or ~*)
keywords: multi-argument message (e.g., at:Put:). Capitalization of
second and following keywords helps eliminating parentheses.

Brackets [] enclose blocks, which are syntatic sugar for certain
constructs
Everything else is a message to an object

A good tutorial is here:
http://research.sun.com/research/self/release/Self-
4.0/Tutorial/index.html

The Self Syntax: Examples

(| parent* = obj1. width = 5. width: = <-.
height = 9. height: = <- |)

(| parent* = obj1. width <- 5. height <- 9 |)

(| parent* = obj2. height = (^width).
height: = (| :x | width: x) |).

(| parent* = obj2. height = (^width).
height: x = (width: x) |)

Goodies

persistency framework: “Transporter” (also
handles namespaces)
Seamlessly integrated Smalltalk system
Parser generator
Collaboration environment
TCP/IP, Web-Server
Glue to arbitrary C++ code
object-library

References
Byte Magazine August 1981 (The Smalltalk Edition)
Goldberg, Robson: Smalltalk-80 The Language and its
Implementation, Addision-Wesley
Rosenbeck: Grundlagen Programmiersprachen, c’t Magazin
4/1989, pp. 106 (German)
Ungar, Smith: SELF The Power of Simplicity, Journal of Lisp and
Symbolic Computation, 4/1991
Officical Self Homepage: http://research.sun.com/self/
x86 ports of Self: http://www.cichon.de/self/ and
http://www.gliebe.de/self/
Self Newsgroups: (http://www.egroups.com/list/self-interest)

